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Resonance in Spherical–Circular
Microstrip Structures

Wai-Yip Tam, Member, IEEE, and Kwai-Man Luk, Member, IEEE

Abstract —The resonance problem of a circular microstrip disk
mounted on a spherical surface is studied theoretically. The radiator is
replaced by a surface current distribution. The effects of the dielectric
substrate as well as the curvature effect are taken iuto accouut by the
Green’s function formulation iu tbe spectral domain. A new vector
Legendre series is defined. Cavity model current distribution is used as
the current basis, Galerkhr’s procedure is employed to solve for the
complex resonant frequencies. Some numerical results are given to
illustrate the effects of curvature and dielectric substrate on the reso-
nance of the microstrip patch.

I. INTRODUCTION

w HEN an antenna is mounted on a curved surface such
as that of a missile, a satellite, or the roof of a car, it is

advantageous if the element does not disturb the streamline
of the body. Microstrip structures offer this capability be-
cause of their low profile and their conformity with a curved
surface.

In the last decade, the resonance frequencies of microstrip
patches placed on planar structure have been studied exten-
sively [11–[51. However, the radiation characteristics of mi-
crostrip patch structures placed on curved surfaces have
attracted little attention. Recently, papers have been pub-
lished on evaluating the curvature effect of a body on the
resonance frequencies of a microstrip patch mounted on an
infinitely long cylindrical ground plane, e.g. [61 and [71.

In [61, a cavity model was used to calculate the resonant
frequencies of a cylindrical–rectangular microstrip patch. In
that analysis, both the fringing field and radiation were
ignored. Thus, no information about the Q factor of the
patch was obtained. In [7], the complex resonant frequencies
of both cylindrical–rectangular and wraparound structures
were analyzed using a full-wave approach.

In this paper, the complex resonant frequencies of a
circular microstrip patch mounted on a spherical body are
investigated using the spectral-domain method. In this
method, the effects of the dielectric substrate and of the
metallic sphere are incorporated by the rigorous Green’s
function formulation. A new vector Legendre series is de-
fined. Galerkin’s procedure is employed to solve for the
complex resonant frequencies. The cavity model surface cur-

rent functions are used as the basis functions. The resonant

frequencies and Q factors of the TMII mode are presented.
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Fig. 1. Geometry of a circular disk on the surface of a sphere.

II. FORMULATION

The geometry of the microstrip structure mounted on a
sphere is shown in Fig. 1. Although the following derivation
is generally true for patches of any shape, only the circular
disk will be analyzed, for brevity. In this figure, a metallic
sphere of radius a is covered with a dielectric substrate of
thickness h, permittivity c1, and permeability ~{,. The outer
region (r > b = a + h) is free space with permittivity co and
permeability Wo. A metallic patch is printed on the surface of

the dielectric substrate. The metallic sphere and the patch
are assumed to be perfect conductors. The thickness of the
disk is negligible, as it is extremely small compared with the
wavelength.

Based on the above assumptions, the radiator is replaced
by an assumed surface current distribution J, at r = b. The
fields are assumed to vary harmonically as- eJ@~and are
suppressed,

In a source-free region, the field components can be

calculated from the electric A,? and magnetic F,? poten-
tials, which generate a transverse magnetic to r (TM) field
and a transverse electric (TE) to r field respectively. These
functions satisfy the scalar Helmholtz equation in spherical
coordinates so that they can be expressed in terms of spheri-
cal harmonics [8].

Inside the dielectric (a < r < b), two spherical Bessel func-
tions are needed to represent the solution since there are
two boundaries to
Legendre function
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be matched. In addition, the associated
of the first kind is used to construct the
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solution as the fields are finite at 0 = O and m. Hence, we

write

Arl=ejmo ~ [A(rz)Z2j1)(kr)+B(n)fij2)(kr)]Pfl(cos O)
~.~

(la)

Frl=ejm@ i [C(n) Z2J1)(kr)+D(rz)Z-?j2)(kr)]Pnm(cos O),
~.m

a<r<b (lb)

Similarly, a spherical Hankel function of the second kind
is used for r > b, as it represents an outward-traveling wave:

Ar2 = ejm+ ~ E(n) fij2)(kOr)Pnm(cos O) (2a)
~.~

Fr2 = ejmo ~ F(n) fi~2)(kOr)Pfl(cos O), r > b (2b)
~.m

where the coefficients ~(n), l?(n), C(n), ~(n), ~(n), and
F(n) are functions of the harmonic order n, l’.m(x) is the
associated Legendre [unction of the first kind with order m
and degree n, and H.(x) is the spherical Hankel function

(Schelkunoff type) of order n [81.
The transverse field components can be expressed in terms

of these two potential functions [9]. For r > b,

mko
+

)
F(n) fi~2)’(k,,r)P.m( cos6) ,

ti~or sin fl

(3C)

(3d)

For a < r <b, the set of equation is similar to (3), except that

E(n) fi~’)( kor) is replaced by

A(n) fiJ1)(kr) +B(n)fi~2)(kr)

and

F(n) fi~2)( k[~r) is replaced by

C(rz)fi~l)(kr) +D(n)fi~2)(kr).

To simplify the problem, the transverse fields are ex-
pressed in the form of vector Legendre series. The transform
pair is defined in matrix form:

F(f)) = j Z(n, m, O)i(n) (4a)
~=m

1
F(n) = J(Y n,m,O)F(tl)sin Od13

S(n, m) o
(4b)

—
where F(@) and fi(rz) are column matrices and ~(n, m, O) is
a 2 X 2 matrix:

Z(n, m, O)=

Also, in (4b),

wnm(cos 6) – jrnqycos e)

(?0 sin e
jmP#(cos O) tyfl(cos e)

sin e 80

2n(n+l)(n+ m)!
S(n, m) =

(2n+l)(n -m)! “

The spectral coefficient ~(n) in (4b) can be evaluated from
(4a) on
functior
have

i,=

H,=

e basis of the orthogonal property of the Legendre

10]. Therefore, by suppressing the term ejmd, we

~[,4(n)fiJ’y(kr) +l?(n)fi~2)’(kr)’
jtielr

~[C(n)HJ’)(kr)+ D(n) I?~2)(kr)]
r

~[C(n)fi~ly(kr) +D(rr)fi~2)’(kr)]
jtipfbr

- ~{ A(n) H~l)(kr)+ B(n) fi~2)(kr)]
rL. -1

[1
k[,

—E(n)H~2)’(k[~r)

E*=
jwe[, r

~F(n)H~2)(k~)r)
r

[1

k{,
—F(n)H!2)’(k[Jr)

H*=
jop{)r

—~E(n)lf!2)(k(Jr)
r

(5a)

(Sb)

(5C)

(5d)

The unknown cmfficients A(n) through F(n) have to be

solved together with the following boundary conditions:

?XE’, =0 on the surface r = a (6a)

?X(E; –E’, )=0 on the surfacer= b (6b)

PX(H’’-,)=J; J; on the surface r = b. (6c)
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In the spectral domain, the corresponding boundary condi- product is defined as follows:
tions are

ii(n) = o (7a)
(A, B)= ~ A+(n) B(n)s(n, m) (16)

~.~

il(rz) = i2(n) (7b) where the superscript + denotes the complex conjugate

transpose.

i(n)=[: ;l][&(n)-til(n)]. (7C) When (14) is weighted by each weighting function, we have

From (7a), the relation between inward and outward waves
inside the dielectric substrate can be determined. In this

[1

~~m~s(n,m)i= ~~mZ’s(n,m) fajz~j o (1’7)

equation, the tangential electric field vanishes on the surface
j

of the metallic sphere, and we have The right-hand-side of (17) becomes

B(n) = – aTMA(n) (8a)

D(n) = – aTEc(rz) (8b)

~7Y~(0)E(8)sinOdO=0

by Perserval’s theorem.
where The above integral vanishes as the surface current and the

fi$lJ’(ka) electric field are complementary to each other on the surface

aTM = fi;z)’(ka)
(9a) r = b. Therefore, (17) becomes

By subjecting boundary conditions
spectral field components, we have

&=~E

(9b) j Ln=m

In matrix form.
(7b) and (7c) to the

(1

o

—
where ~ is a diagonal matrix

I
H,(b) . H3(b)
— ——

jyoH{(b) ‘yl Hj(b)
F=

Hi(b) Hj(b)
0

jyo~– “~yl H,(b)

(1

J

PA=O (19)

where
I

[

al
a2

A= ‘3

I I a.,
L--,,

and
w

(20)

(21)

where

Hi(r) = f?~z)(kor) ( lja)

Hz(r) = {fiJ1)(kr) - aT~E?~2)(kr)} (13b)

H3(r) = {I?#)(kr) - aTMfi~2)(kr)}. (13C)

Equation (10) may be written as

— —
where ~ = ~– 1.

Next, the surface current is expanded by a set of basis

functions:

~.m

For the existence of a nontrivial solution to the homoge-
neous equation, (19), the determinant of P should vanish,

(12) i.e.,

..-. Det(P)=O. (22)

Hence

j

Applying Galerkin’s procedure, the same set of basis func-
tions are taken as the weighting functions, and the inner

ln general, the solution of this equation, denoted by w, of
this equation is a complex number. The imaginary part of o,
denoted by ~(o), accounts for the radiation loss and gives
the quality factor, Q, of the structure. The real part of the
solution, denoted by .$#(ti), is the resonant frequency, Or, of
the structure. In mathematical form, we have

a), = ,%(0) (23)

(24)

The surt%ce current distribution in (15) is approximated by
a set of basis functions. Theoretically, an infinite number of
basis functions should be used to give an exact expansion of
the surface current. However, only a few basis functions are
adequate to provide a practical solution if the basis functions
are chosen appropriately. Furthermore, as the current basis
functions should be transformed in evaluating the complex
resonant frequency, it is convenient to choose expressions
that are transformable into closed forms. In the analysis, the
cavity model theory [1] is employed to derive the basis
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functions for the surface current distribution. To this end,

the surface currents on the circular disk operated at the

TMn,) mode and TEm,, mode are obtained as follows. For....
TM~U modes, “-’

U=’:(COS tl)

o<‘0 (25a)

o, 6> (30

Py’(cosoo) = o.

For TE~u modes,

(25b)

[[”I+&r(cos 6)

J,%t(()) = Wy(cose) ‘ e<‘0 (26a)
—

ao

o, 9>00

with

y(cos 6.) = o. (26b)

From the definition of the vector Legendre series, (4), the
amplitude coefficients of the TM~U and TE~U mode surface
current distributions are given by

1
J,?m( = —

S(n, m)

[

. (l-cos’oo)
U(U +1)

Py(cos eo)Pny(cos O.)
n(rr+l)-u(u+l)

jmP#(cos @o)P,7(cos 190) 1
(27)

1,
~,TEM,, ~

S(n, m)

[

o

“ (l-COS’OO)
rs(rr+l)

1R’xcos %)P,?(COS 00) ‘
n(n+l)–u(u+l)

J

(28)

III. NUMERICAL RESULTS

In this section, the effects of the dielectric substrate and of
the size of the sphere on the resonant frequencies and Q
factors of a circular disk patch are illustrated with some
practical examples.

In parts (a) and (b) of Fig. 2, the resonant frequencies and
Q factors of the TM ~, mode are displayed as a function of

the dielectric substrate thickness. The cutves correspond to

the different numbers of surface current modes used. It can
be observed that the Q factor converges much faster than
the resonant frequency.

Parts (a) and (b) of Fig. 3 show the resonant frequencies
and Q factors for different sizes of the metallic sphere with a

$
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Fig. 2. (a) Resonant frequency with different numbers of basis current:
c, = 2.32, btl[) = 2 cm, a = 5 cm. Curve a: TM,,. Curve b: TM1l and
TE1,. Curve c: TM,, and TM12. Curve d: TM,,, TM12, and TEII. (b) Q
factor with different numbers of basis current: c,= 2.32, b60-2 cm,
a=5 cm, Curve a: TM,]. Curve b: TM1l and TE1l. Curve c: TM1l and
TM12. Curve d: TM,,, TM12, and TE1l.

substrate having a dielectric constant c, = 2,32. From these
graphs, it is seen that the curved surface reduces the effec-
tive radius of the patch and increases the radiation loss of
the structure. The curves for the planar case are obtained by
the Hankel domain analysis [3].

IV. CONCLUSION

The resonant frequency and the quality factor of a circular
disk mounted on a spherical body, operated at the TM II
mode, have been studied rigorously using the spectral-domain
method. Numerical results show that the effect of the curved
surface on the resonant frequency and quality factor may be
significmt. [n general, when the radius of the sphere is
decreased, the effective radius of the patch will be reduced
and the radiation loss is increased.
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Fig. 3. (a) Resonant frequency with different sphere radii: e,= 2.32,

boo = 2 cm. TM II, TM12, and TEII modes are used. (b) Q factor with
different sphere radii. e.= 2.32, bflo = 2 cm. TMII, TM12, and TEII
modes are used.
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